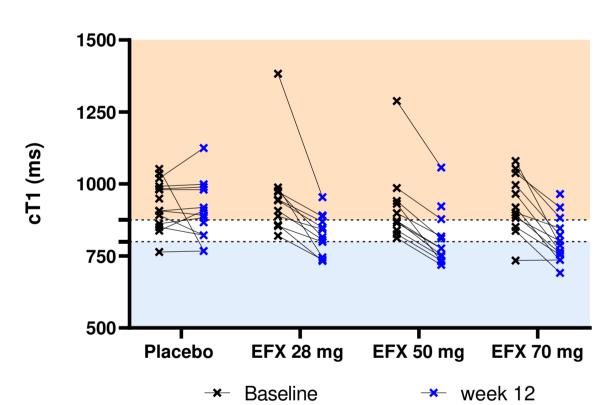


Noninvasive tests of liver injury, inflammation and fibrosis are improved by efruxifermin and correlate with histological improvements in patients with F2-F3 NASH: secondary analysis of Ph2b HARMONY study (Abstract 1669)



Jörn M. Schattenberg<sup>1</sup>, Juan Frias<sup>2</sup>, Guy Neff<sup>3</sup>, Gary A. Abrams<sup>4</sup>, Jeannie Lucas<sup>5</sup>, William Sanchez<sup>6</sup>, Sudhanshu Gogia<sup>7</sup>, Muhammed Y. Sheikh<sup>8</sup>, Cynthia Behling<sup>9</sup>, Pierre Bedossa<sup>10</sup>, Lan Shao<sup>11</sup>, Erica Fong<sup>12</sup>, Brittany de Temple<sup>12</sup>, Doreen Chan<sup>12</sup>, Reshma Shringarpure<sup>12</sup>, Erik J Tillman<sup>12</sup>, Timothy Rolph<sup>12</sup>, Andrew Cheng<sup>12</sup>, Kitty Yale<sup>12\*</sup>, and Stephen A. Harrison <sup>13</sup>

<sup>1</sup> University Medical Center, Mainz, Germany; <sup>2</sup> Velocity Clinical Research, Los Angeles, CA; <sup>3</sup>Covenant Metabolic Specialists, Sarasota, FL; <sup>4</sup>Prisma Health Upstate, Greenville, SC; <sup>5</sup>Lucas Research, Morehead, NC; <sup>6</sup>Floridian Clinical Research, Miami Lakes, FL; <sup>7</sup>Texas Digestive Disease Institute, Webster, TX; <sup>8</sup> Fresno Clinical Research Center, Fresno, CA; <sup>9</sup> Sharp Memorial Hospital, San Diego, CA; <sup>10</sup>Liverpat, Paris, France; <sup>11</sup> Labcorp, Burlington, NC; <sup>12</sup> Akero Therapeutics, South San Francisco, CA; <sup>13</sup>Pinnacle Clinical Research, San Antonio, TX


# BACKGROUND

Non-invasive tests (NITs) are needed to monitor histological improvement in patients with nonalcoholic steatohepatitis (NASH) in clinical trials. In a phase 2a study (BALANCED) of participants with NASH and F1–F3 fibrosis or compensated cirrhosis, including those with type 2 diabetes (T2D) at baseline, efruxifermin (EFX; a longacting Fc-FGF21 fusion protein) decreased liver fat content and markers of liver injury, inflammation, and fibrosis, while improving metabolic health.<sup>1,2</sup> These observations have been confirmed in a phase 2b study (HARMONY).<sup>3</sup>

Post hoc analysis of the 16-week BALANCED study evaluated liver fibro-inflammation at week 12 using the imaging biomarker cT1 (iron-corrected T1) to assess likelihood of at-risk NASH, defined as a diagnosis of NAS>4 and F≥2.<sup>4</sup>

|                                                | Placebo | EFX 28mg | EFX 50mg | EFX 70mg |
|------------------------------------------------|---------|----------|----------|----------|
|                                                | (N=14)  | (N=12)   | (N=11)   | (N=12)   |
| Mean baseline cT1 (ms)                         | 930.8   | 956.3    | 921.0    | 929.1    |
| cT1 ≤ 800 ms at week 12                        | 1 /11   | 4 / 11   | 6 / 11   | 6 / 10   |
|                                                | (9%)    | (36%)    | (55%)    | (60%)    |
| ≥ 88 ms cT1 reduction from baseline at week 12 | 1 / 12  | 6 / 11   | 10 /11   | 9 / 11   |
|                                                | (8%)    | (55%)    | (91%)    | (82%)    |

<u>cT1 ≤ 800</u>: associated with low likelihood of at-risk NASH
 <u>cT1 > 875</u>: associated with high likelihood of at-risk NASH
 <u>CFB in cT1 ≥ 88 ms</u>: associated with 2-point reduction in NAS



Ongoing clinical evaluation of EFX will further explore imaging and circulating markers of NASH histopathology.

# AIMS

The aims of this study were to assess:

- 1) NIT results from participants who received EFX for up to 24 weeks, and
- 2) Their association with histologic features of NASH.

# METHODS

This study analyzed treatment-related changes in NITs from 115 participants after 24 weeks in the ongoing, randomized, placebo-controlled phase 2b HARMONY study, which is evaluating EFX 28 and 50 mg, dosed subcutaneously (SC), once weekly (QW).<sup>3</sup> Changes in NIT results were analyzed for correlations with the following histologic improvements based on NASH-CRN scores: fibrosis improvement without NASH worsening; NASH resolution without fibrosis worsening; and both fibrosis improvement and NASH resolution.

Participants with biopsy-confirmed F2–F3 NASH (n=128) were randomized (1:1:1) to groups that received 28 mg or 50 mg EFX or placebo, SC QW; 126 received at least 1 dose of study drug; 113 participants underwent liver biopsy at week 24. Biopsies were scored independently by two NASH-CRN-trained pathologists, blinded to groups and biopsy sequence.

## RESULTS

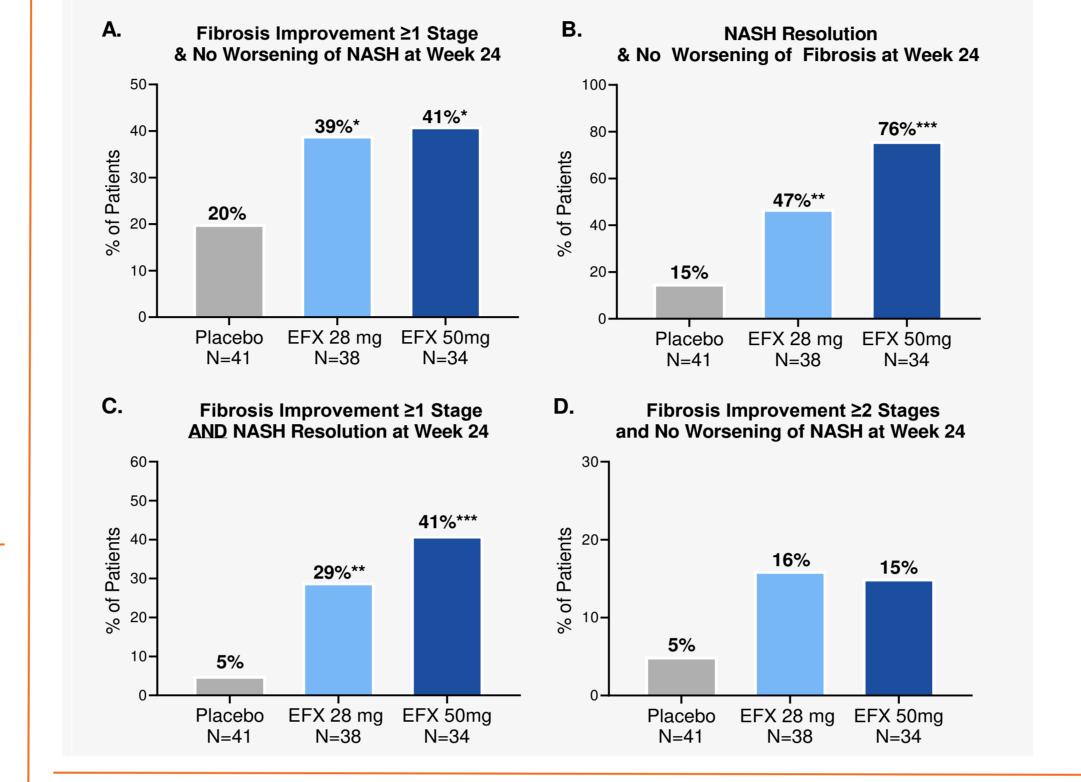
Figure 1. HARMONY study design



 Table 1. Change from Baseline (CFB) for NITs at Week 24

| Parameter (Unit) Category  LS mean (SE) unless otherwise noted                                                  | Placebo      | EFX<br>28 mg | EFX<br>50 mg |
|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| LFC (%), MRI-PDFF                                                                                               | N=42         | N=38         | N=35         |
| Relative (%) CFB                                                                                                | -6.0 (4.01)  | -51.6 (4.31) | -63.7 (4.42) |
| P vs placebo                                                                                                    | NA           | <0.001       | <0.001       |
| Pro-C3 (measured by ELISA)                                                                                      | N=40         | N=37         | N=35         |
| Absolute CFB (ng/ml)                                                                                            | 0.1 (0.70)   | -5.1 (0.74)  | -5.2 (0.74)  |
| P vs placebo                                                                                                    | NA           | <0.001       | <0.001       |
| ELF score                                                                                                       | N=41         | N=37         | N=32         |
| Absolute CFB                                                                                                    | 0.1 (0.10)   | -0.6 (0.10)  | -0.7 (0.11)  |
| P vs placebo                                                                                                    | NA           | <0.001       | <0.001       |
| NIS-4 Score                                                                                                     | N=39         | N=35         | N=31         |
| Absolute CFB                                                                                                    | 0.0 (0.03)   | -0.3 (0.04)  | -0.3 (0.04)  |
| P vs placebo                                                                                                    | NA           | <0.001       | <0.001       |
| Liver stiffness, FibroScan (VCTE)                                                                               | N=42         | N=38         | N=36         |
| Relative (%) CFB                                                                                                | -0.4 (5.82)  | -15.4 (6.19) | -24.7 (6.37) |
| P vs placebo                                                                                                    | NA           | 0.064        | 0.004        |
| FAST score                                                                                                      | N=39         | N=37         | N=34         |
| Mean (SD) CFB                                                                                                   | -0.05 (0.19) | -0.31 (0.22) | -0.46 (0.14) |
| P vs placebo                                                                                                    | NA           | <0.0001      | <0.0001      |
| ELF, enhanced liver fibrosis; FAST, FibroScan-Adensity fat fraction; Pro-C3, N-terminal type III coelastography |              |              |              |

**Figure 2.** EFX Robustly Reduced Liver Fat, Normalizing LFC in a Significant Proportion of Participants


and controlling for stratification factors for comparisons between the EFX and placebo groups for Pro-C3 and

ELF score. FAST p-values are from 1-way ANOVA, Dunnett's multiple comparisons test. Baseline is the last

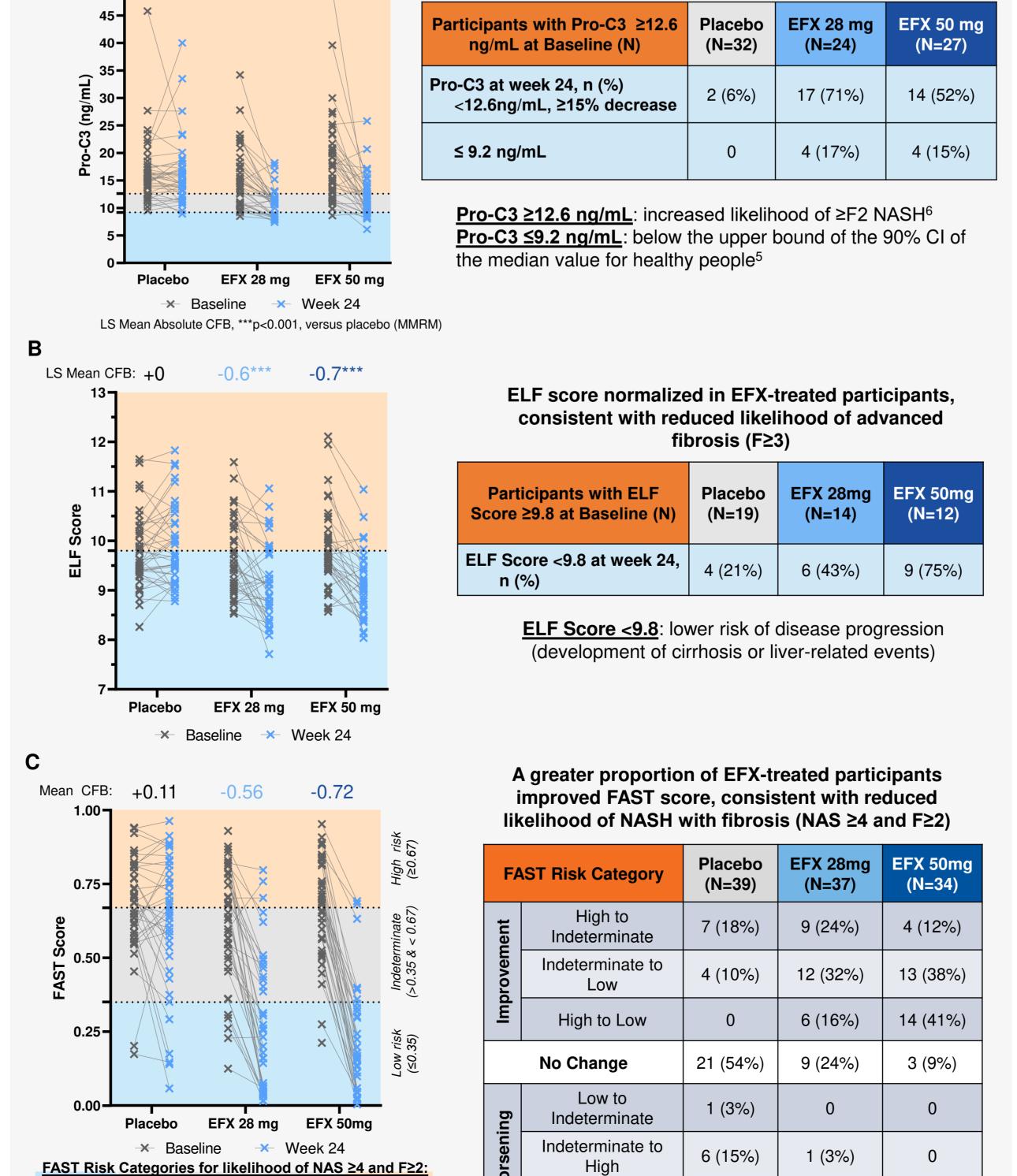
non-missing measurement prior to the first dose of study drug.

| Participants achieving endpoint, n (%)                                       | Placebo<br>(N=42)                  | EFX 28 mg<br>(N=38)          | EFX 50 mg<br>(N=35) |
|------------------------------------------------------------------------------|------------------------------------|------------------------------|---------------------|
| <b>Liver Fat Normalization</b> (>5% at Baseline, ≤5% at Week 24)             | 0                                  | 13 (34%)***                  | 18 (51%)***         |
| ≥50% Relative Reduction in Liver Fat Content at Week 24                      | 1 (2.4%)                           | 24 (63%)***                  | 27 (77%) ***        |
| Live                                                                         | r Fat Content by M                 | RI-PDFF                      |                     |
| LS Mean Relative % Change from Baseline in Liver Fat in Liver Fat Place N=40 | - <b>52</b> %***<br>ebo EFX 28mg I | -64%***<br>EFX 50 mg<br>N=35 |                     |

Figure 3. EFX Significantly Improved NASH Histopathology



**Table 2.** Normalization of Liver Fat, AST, and ALT by EFX was Significantly Associated With Increased Odds of Histologic Improvement

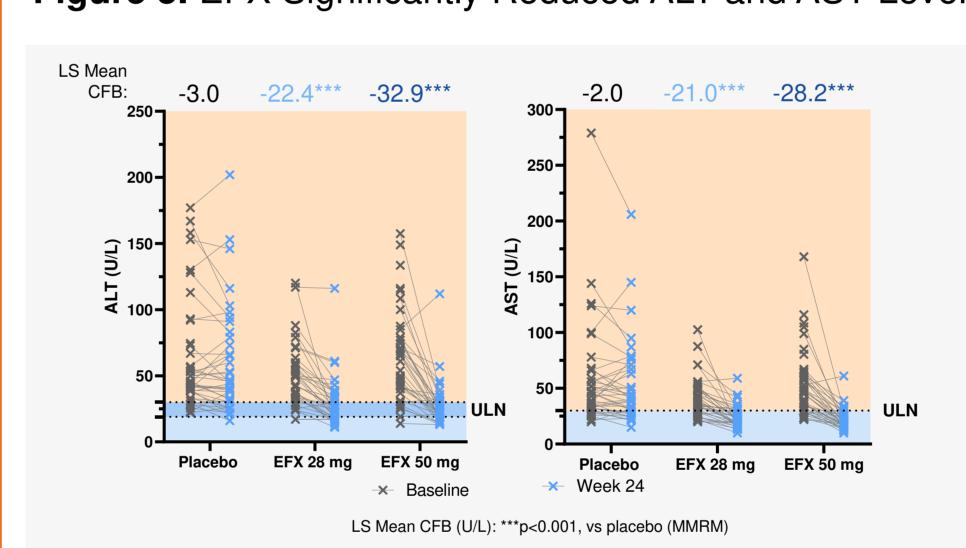

| Odds of Achieving Histologic Endpoint with Biomarker Normalization (Among EFX-treated Participants) | Odds Ratio [95% CI] |  |
|-----------------------------------------------------------------------------------------------------|---------------------|--|
| Normalization of Liver Fat Content                                                                  |                     |  |
| NASH resolution and no worsening of fibrosis                                                        | 4.6 [1.5, 14.2] **  |  |
| Fibrosis improvement with no worsening of NASH                                                      | 1.4 [0.5, 3.6]      |  |
| NASH resolution AND fibrosis improvement                                                            | 3.4 [1.4, 8.3] *    |  |
| AST Normalization                                                                                   |                     |  |
| NASH resolution and no worsening of fibrosis                                                        | 6.7 [1.7, 24.7] **  |  |
| Fibrosis improvement with no worsening of NASH                                                      | 3.2 [0.9, 11.8]     |  |
| NASH resolution AND fibrosis improvement                                                            | 2.3 [0.6, 8.7]      |  |
| ALT Normalization                                                                                   |                     |  |
| NASH resolution and no worsening of fibrosis                                                        | 4.2 [1.4,11.9] *    |  |
| Fibrosis improvement with no worsening of NASH                                                      | 1.76 [0.7, 4.8]     |  |
| NASH resolution AND fibrosis improvement                                                            | 2.1 [0.7, 6.5]      |  |

\* P < 0.05, \*\* P < 0.01 by Fisher's exact test

**Figure 4.** EFX Significantly Improved NITs Associated with NASH and Fibrosis, including: (A) Pro-C3, (B) ELF Score, and (C) FAST Score

Pro-C3 normalization was much more common in EFX-

treated participants




Low to High

low (≤0.35), indeterminate (>0.35 & < 0.67) and high (≥ 0.67)

Statistics not calculated for arithmetic mean CFB in FAST score

### Figure 5. EFX Significantly Reduced ALT and AST Levels



EFX Normalized ALT and AST Levels Within 24 Weeks

| Proportion of Participants Achieving Normalization                                                            | Placebo | EFX 28 mg | EFX 50 mg |
|---------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|
| <b>ALT</b> (Males: ≥30 U/L at baseline, <30 U/L at week 24; Females: ≥19 U/L at baseline, <19 U/L at week 24) | 2/40    | 9/32      | 17/34     |
|                                                                                                               | (5.0%)  | (28.1%)   | (50.0%)   |
| <b>AST</b> (>30 U/L at baseline, ≤ 30 U/L at week 24)                                                         | 5/33    | 18/27     | 22/26     |
|                                                                                                               | (15.2%) | (66.7%)   | (84.6%)   |

Table 3. EFX Improved NIS-4 (NASH Risk) Scores

|             | NIS-4 Risk Category   | Placebo<br>(N=36) | EFX 28 mg<br>(N=26) | EFX 50 mg<br>(N=24) |
|-------------|-----------------------|-------------------|---------------------|---------------------|
| nent        | High to Indeterminate | 2 (5.6%)          | 7 (26.9%)           | 6 (25.0%)           |
| Improvement | Indeterminate to Low  | 2 (5.6%)          | 1 (3.8%)            | 2 (8.3%)            |
| Impr        | High to Low           | 3 (8.3%)          | 7 (26.9%)           | 9 (37.5%)           |
|             | No Change             | 27 (75.0%)        | 10 (38.5%)          | 7 (29.2%)           |
| ing         | Low to Indeterminate  | 0                 | 0                   | 0                   |
| Worsening   | Indeterminate to High | 0                 | 1 (3.8%)            | 0                   |
| Mo          | Low to High           | 2 (5.6%)          | 0                   | 0                   |

NIS-4 > 0.63: at-risk for NASH

# CONCLUSIONS

- In the phase 2b HARMONY study in patients with NASH and F2 or F3 fibrosis, 24 weeks treatment with EFX led to significant improvements in histopathology of NASH and fibrosis
- EFX-associated changes in NIT results were associated with changes in NASH histopathology
- EFX significantly reduced liver fat, and improved circulating and imaging-based biomarkers of liver injury, inflammation, and fibrosis compared with placebo
- Normalization of liver fat content, AST, or ALT in EFX-treated participants was associated with a higher probability of resolving histopathologic features of NASH.
- Although most participants began the study in high-risk NIT categories based on Pro-C3 (fibrogenesis), ELF(fibrosis burden), and FAST (liver fat, fibrosis, and injury) scores, treatment with EFX was associated with significant shifts to lower risk categories.
- Results of NITs may be useful in predicting responses to EFX among treated patients with moderate-to-severe (F2/F3) fibrosis and NASH.

## REFERENCES

- 1. Harrison, S. et al. 2021 Nature Medicine (DOI:10.1038/s41591-021-01425-3)
- 2. Harrison, S et al. 2023.JHep Rep. (DOI:10.1016/j.jhepr.2022.100563)
- 3. The Liver Meeting AASLD (2021 & 2022) (https://ir.akerotx.com/static-files/a339f5fc-2615-48e9-9e8b-b56767ccd58d)
- 4. Dennis, A et al. 2021 Front. Endocrin. (DOI:10.3389/fendo.2020.575843)
- 5. Erhardtsen E et al. 2021 JHep Rep (DOI:10.1016/j.jhepr.2021.100317)



# ACKNOWLEDGMENTS

The authors wish to thank the study participants, their families, and study investigators.

This study and all analyses were funded by Akero Therapeutics.

Contact: kyale@akerotx.com