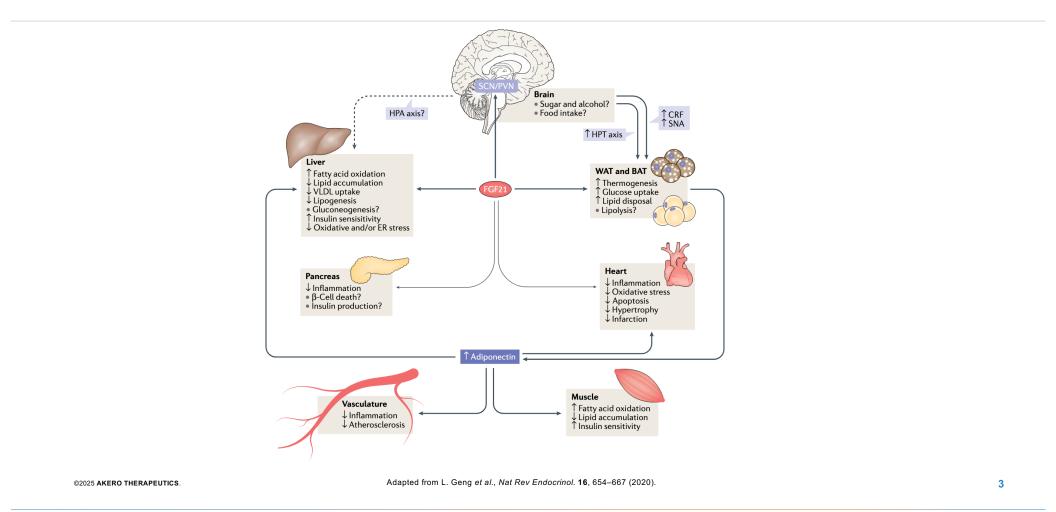


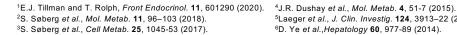
Pleiotropic effects of FGF21 in liver, brain, and adipose tissue

Tim Rolph, DPhil Chief Scientific Officer


10 January 2025

» Disclosures

- Akero Therapeutics: co-founder, employee, shareholder
- BioAge Labs: consultant, shareholder

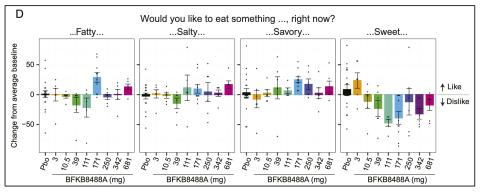

» FGF21 protects cells, organs, and the whole body during periods of stress ak=ro

FGF21's potential to treat liver diseases, notably MASH, is supported by its role as an endogenous agent protecting liver against many types of stress

ak=ro

- Stressed hepatocytes are a major source of FGF21
- FGF21 acts on hepatocytes and other liver-resident cells (e.g. Kupffer cells, hepatic stellate cells) [*autocrine/paracrine*], and other tissues/organs [*endocrine*] to alleviate and repair liver injured by stress¹
- Stressors that induce expression and secretion of FGF21 include: •
 - Dietary imbalance, arising from excessive intake of alcohol², carbohydrates³, or fructose⁴, or from restriction of protein⁵
 - Exposure to hepatotoxins including acetaminophen⁶ and nitrosamines⁷
- Protective actions of FGF21 to mitigate these stressors include:
 - Reducing alcohol² and sugar^{3,4} consumption
 - Balancing macronutrient intake with whole body needs³⁻⁵
 - Redirecting excessive dietary energy from liver to adipose tissue by increasing peripheral insulin sensitivity⁸
 - Activating adaptive processes that ameliorate oxidative stress⁶ and restore proteostasis via the integrated stress response pathway⁹

⁵Laeger et al., J. Clin. Investig. **124**, 3913–22 (2014). ⁶D. Ye et al., Hepatology **60**, 977-89 (2014).

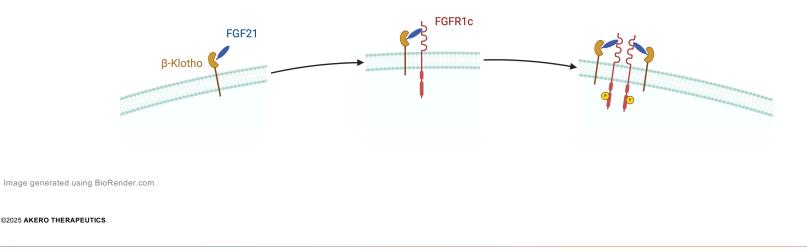

⁷P. Xu et al., Toxicol Appl Pharm. **290**, 43–53 (2016). ⁸J.P.G. Camporez et al., Endocrinology. 154, 3099-3109 (2013). ⁹S. Jiang et al., J Biol Chem. 289, 29751-65 (2014).

FGF21's potential to treat MASH is supported by phenotypes of humans carrying loss-of-function genetic variants

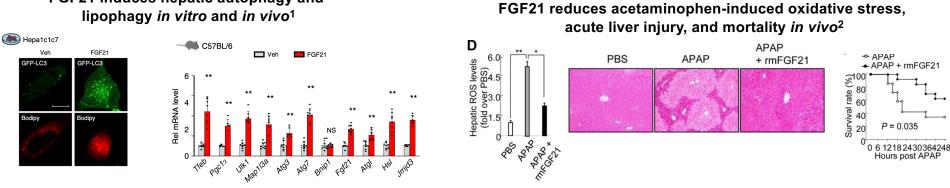
ak≘ro

- Loss-of-function genetic variants in either FGF21 or its receptors (β-Klotho and FGFR1):
 - associate with:
 - obesity and insulin resistance¹
 - altered preference for alcohol², sweet³ or salty-tasting⁴ foods
 - recapitulated by food preference survey from Genentech's BFKB8488A ph1b:

- do not associate with⁵:
 - lower blood pressure
 - altered skeletal development
 - increased incidence of cancers


A. Baruch et al., Proc Natl Acad Sci. 117, 28992-29000 (2020).

¹S. Stone *et al.*, *J Endocr Soc.* **4**, bvaa138 (2020). ²G. Schumann *et al.*, *Proc National Acad Sci.* **113**, 14372-77 (2016). ³S. Søberg *et al.*, *Cell Metab.* **25**, 1045-53 (2017). ⁴M. Saber-Ayad *et al.*, *J Adv Res.* **24**, 485–494 (2020). ⁵T.M. Frayling *et al.*, *Cell Reports.* **23**, 327–336 (2018).


FGF21 signaling is tissue-restricted by β-Klotho expression and transduced by canonical FGFRs

ak≘ro

- FGF21 has high affinity for β-Klotho as a cell-surface "trap", but not for heparan sulfate
- FGF21 signals through a complex of β-Klotho with FGFR 1c/2c/3c, but not with FGFR4 (unlike FGF19)
- β-Klotho expression, unlike heparan sulfate, is tissue-restricted, conferring endocrine and paracrine actions of FGF21
- Co-localization of FGFR1c/2c/3c with β-Klotho required for FGF21's intracellular signaling
- FGFR1c/2c/3c are receptor tyrosine kinases, in which dimerization and transautophosphorylation potentiate signaling

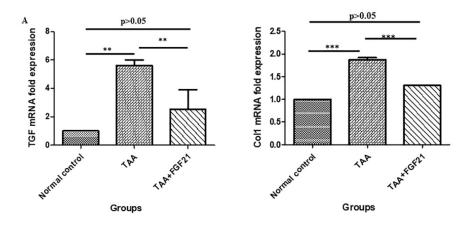
FGF21 enhances lipid breakdown and clearance of damaged >> proteins, and reduces liver injury in rodents caused by hepatotoxins

¹S. Byun et al., Nat Commun. **11**, 807 (2020). ²D. Ye et al., Hepatology. **60**, 977–989 (2014).

©2025 AKERO THERAPEUTICS

FGF21 induces hepatic autophagy and

ak≡ro

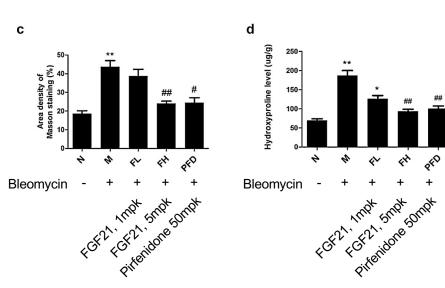

7

» FGF21 exerts direct anti-fibrotic effects in liver of rodents

Ethanol Col1a1 expression a-SMA expression Α Relative collagen α 1 mRNA expression E+FL E+FH E+FL E+FH С E C Е EtOH + + + + + + FGF21 lo hi hi lo _ PDGF-BB a-SMA expression Col1a1 expression 20-Relative α-SMA mRNA expression P+FL P+FL P+FH ċ PDGF + + + + + + FGF21 lo hi lo hi

FGF21 suppresses HSC fibrogenic gene expression in vitro¹

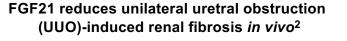
FGF21 suppresses fibrogenic gene expression in liver in mouse models of chemical (i.e., non-metabolic) liver injury and fibrosis²

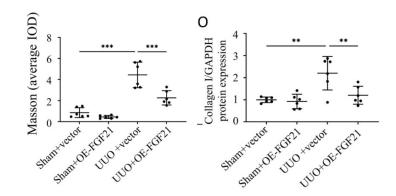


¹P. Xu et al., Toxicol Appl Pharm. 290, 43–53 (2016). ²Y. K. Opoku et al., Excli J. 19, 567–581 (2020).

©2025 AKERO THERAPEUTICS

FGF21 ameliorates fibrosis across diverse organs, independent of any underlying metabolic driver

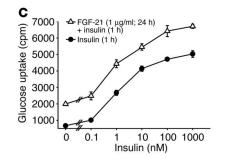

ak≡ro

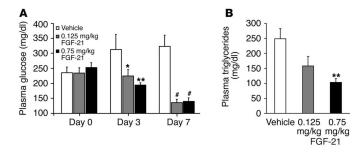


FGF21 reduces bleomycin-induced lung fibrosis in vivo1

<*>

0th



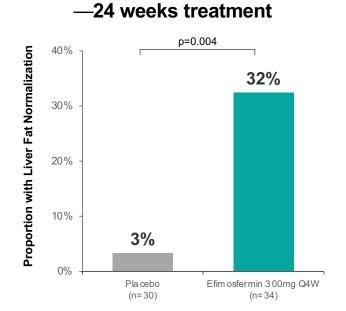

¹S. Zhang et al., Biomed Pharmacother. **103**, 1516–1525 (2018). ²W. Zhong et al., BBA - Mol. Cell Res. **1871**, 119620 (2024)

FGF21 enhances adipose tissue capacity to store dietary glucose and lipid safely, and to secrete adiponectin

FGF21 enhances insulin-mediated adipocyte glucose uptake *in vitro*¹

FGF21 reduces plasma glucose and TG in vivo1

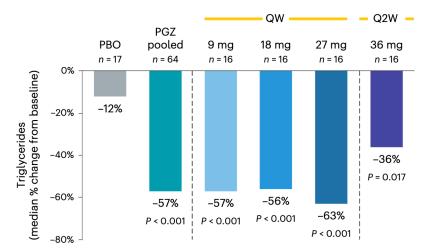
¹A. Kharitonenkov et al., J Clin Invest. **115**, 1627–1635 (2005). ²Z. Lin et al., Cell Metab. **17**, 779–789 (2013).


©2025 AKERO THERAPEUTICS

FGF21 induces adiponectin expression and secretion in adipocytes in vitro² Α В Vehicle -Vehicle nectin mRNA(AU) FGF21 Fold change of Adiponectin levels -FGF2 2.0 1.5 12 24 Ó 6 Times(hours) Times(hours)

ak≡ro

10


FGF21 analogs consistently improve metabolic health of patients with MASH or severe hypertriglyceridemia (SHTG)

FGF21 (efimosfermin) normalizes liver fat

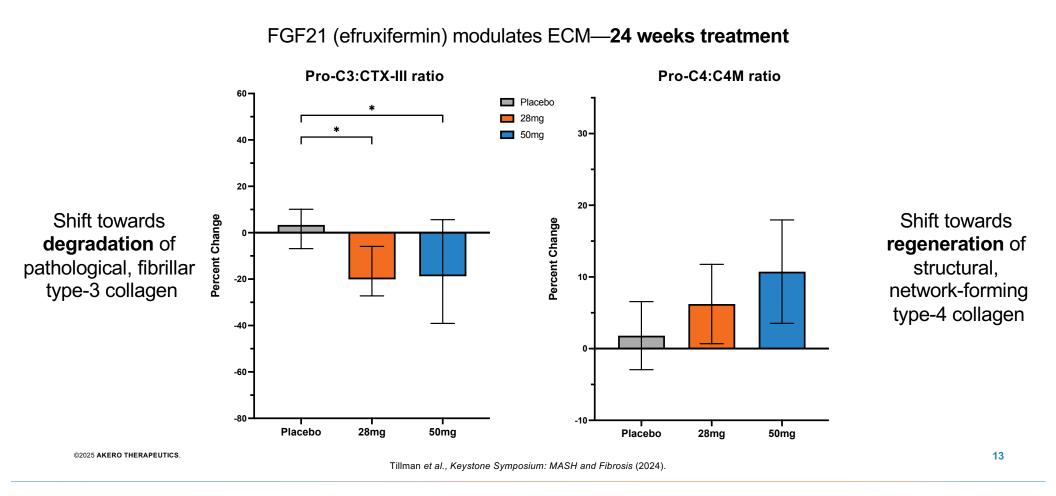
Noureddin et al., AASLD: The Liver Meeting, LB-5017 (2024).

FGF21 (pegozafermin) reduces TG in SHTG—8 weeks treatment

D. L. Bhatt et al., Nat. Med. 29, 1782-92 (2023).

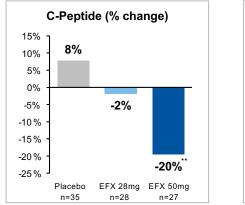
©2025 AKERO THERAPEUTICS

 \gg

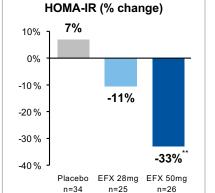

FGF21 analogs consistently improve liver histopathology and stiffness in patients with MASH

 \gg

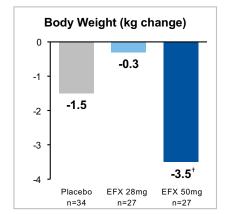
FGF21 (efruxifermin) reverses fibrosis and reduces liver stiffness-96 weeks treatment Fibrosis Improvement ≥1 Stage & No Worsening of MASH¹ Change from Baseline in Liver Stiffness (VCTE), kPa 75%*** 2 80% 70% 0 60% -2 46% 50% -4 40% 30% ** 24% -6 20% -8 *** 10% **W96** W96 **W96** -10 -0% BL W24 W48 W96 N=34 N=26 N=28 EFX 28mg EFX 50mg Placebo -----Placebo --O-- EFX 28 mg ------------------------------EFX 50 mg ¹ All participants with baseline and week 96 biopsy *p<0.05, **p<0.01, ***p<0.001 versus placebo (MMRM) *** p<0.001, versus placebo at W96 (Cochran-Mantel-Haenszel Test [CMH]) ©2025 AKERO THERAPEUTICS

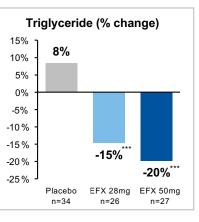

12

FGF21 analogs appear to selectively modulate ECM in patients with MASH: Stimulating degradation of fibrillar collagen and regeneration of basement membrane \gg collagen required for hepatocyte function



FGF21 analogs redirected energy away from liver to adipose tissue, without increasing body weight in patients with MASH


96 weeks treatment



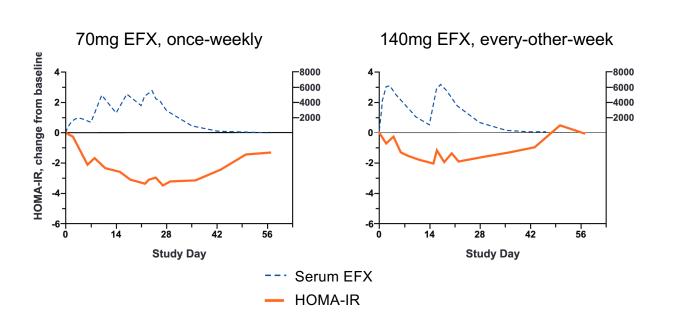
FGF21 (efruxifermin) increases insulin sensitivity

FGF21 (efruxifermin) reduces TG without increasing BW

 * p<0.05, ** p<0.01, *** p<0.001, versus placebo (MMRM); † p<0.05, versus baseline (MMRM)

Source Data: FAS, non-missing values only, no imputation

MASH is an FGF21-resistant state: what are the implications for development and dosing of FGF21 analogs?

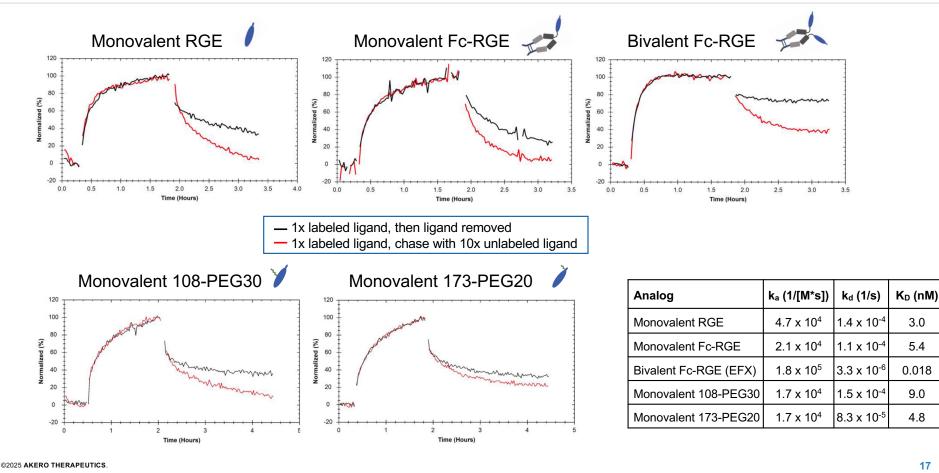

- Continued stress (chronic alcohol intake, obesity, T2D, MASH) appears to desensitize responsiveness to FGF21:
 - Desensitization of receptor tyrosine kinase signaling is an established phenomenon, e.g. insulin receptor in pre-diabetes and diabetes, but it can be "dosed through"
 - Increased serum FGF21¹⁻³ levels compared to healthy state, analogous to insulin levels in prediabetes
 - Decreased adipose KLB expression⁴
 - Efficacy of FGF21 analog, pegbelfermin, appeared to diminish with longer dosing^{5,6}

How might efficacy of FGF21 analogs be maintained in the FGF21-resistant state?

¹D. Barb et al., J Clin Endocrinol Metabolism. **104**, 3327-36 (2019). ²J. Dushay et al., Gastroenterology. **139**, 456-63 (2010). ³Y.C. Woo et al., Clin Endocrinol. **86**, 37-43 (2017). ⁴f.M. Fisher et al., Diabetes. **59**, 2781-9 (2010). ⁵R. Loomba et al., Clin Gastroenterol Hepatol. **22**, 102-12 (2024). ⁶M.F. Abdelmalek et al., Clin Gastroenterol Hepatol. **22**, 113-23 (2024)

Comparable total exposures with different dosing schedules: Maintaining pharmacology across inter-dose interval appears critical for efficacy

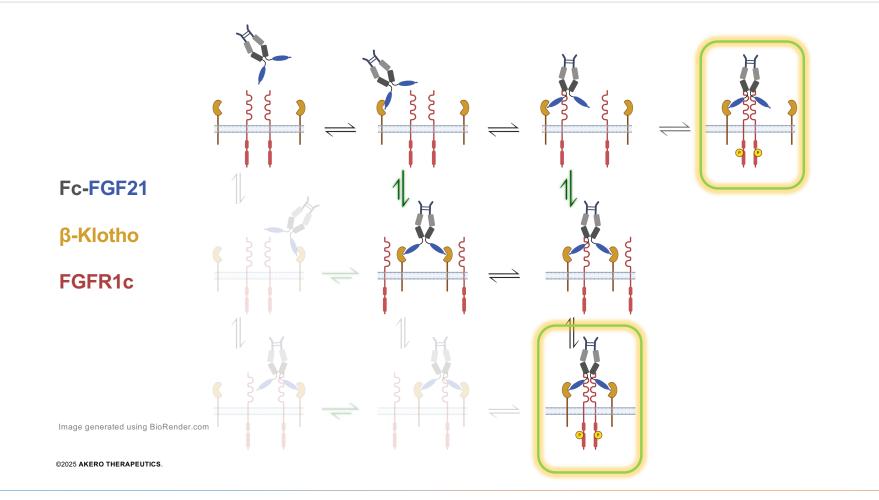
4-week study in patients with T2D


Kaufman et al., Cell Rep Med. 1, 100057 (2020)

 \gg

Sustained pharmacodynamic effect may be enabled through continued receptor engagement conferred by a bivalent structure

 \gg


Tillman et al., The Liver Meeting, AASLD. Poster 5051 (2022).

Independent nature of sequential binding of FGF21 to β -Klotho: β -Klotho expression limits native FGF21 or monovalent analog affinity

©2025 AKERO THERAPEUTICS.

For bivalent FGF21 analogs, sequential β -Klotho and FGFR1c binding events are *not* independent, but rather facilitated by linkage through Fc

 \gg

- FGF21 analogs address both the underlying driver of MASH pathology as well as sustainably arrest or reverse development of liver fibrosis, with potential for:
 - Differentiated efficacy as monotherapy in F2-F3 fibrosis, with potential in F4c
 - Additional efficacy when used with resmetirom or semaglutide
- FGF21's antifibrotic effect appears mediated by two distinct actions:
 - Indirectly, by reducing the underlying profibrotic state of liver fat, lipotoxicity, and injury
 - Directly, by inhibiting synthesis of collagen by liver resident myofibroblasts, while maintaining a natural rate of collagen degradation
- Antifibrotic effects appear quite specific, in reducing pathological fibrillar collagen, while preserving or restoring basement membrane collagen critical for hepatocyte function
- Sustained improvements in overall metabolic health of patients underpins the efficacy of FGF21 analogs in reducing liver injury

» Acknowledgments

ak≘ro

- Amgen, Inc
- Ridgeview Instruments