

Efruxifermin improves fibrosis in participants with compensated cirrhosis due to MASH: results of a 96-week, randomized, double-blind, placebocontrolled, phase 2b trial (SYMMETRY)

Mazen Noureddin MD,^{*1} Mary E. Rinella MD,² Naga P. Chalasani MD,³ Guy W. Neff MD,⁴ K. Jean Lucas MD,⁵ Manuel E. Rodriguez MD,⁶ Madhavi Rudraraju MD,⁷ Rashmee Patil MD,⁷ Cynthia Behling MD PhD,⁸ Mark Burch PhD,⁹ Doreen C. Chan PhD,⁹ Erik J Tillman PhD,⁹ Arian Zari BS,⁹ Brittany de Temple BS,⁹ Reshma Shringarpure PhD,⁹ Meena Jain MB BChir PhD,⁹ Timothy Rolph DPhil,⁹ Andrew Cheng MD PhD,⁹ Kitty Yale BS⁹

¹ Houston Research Institute; Houston Methodist Hospital, Houston, TX, USA;² University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA ³ Indiana University School of Medicine, Indianapolis, IN ⁴ Covenant Metabolic Specialists, Fort Myers, FL; ⁵ Lucas Research, Morehead City, NC; ⁶ Florida Research Institute, Lakewood Ranch, FL; ⁷ Pinnacle Clinical Research, San Antonio, TX; ⁸ University of California San Diego, La Jolla, CA; ⁹ Akero Therapeutics, South San Francisco, CA

Disclosures

Advisory Board/Consulting: Akero, Altimmune, Alligos, AstraZeneca, BI, Boston Pharma, Cytodyn, GSK, Lilly, Madrigal, Merck, Novo Nordisk, Sagimet, Terns and Takeda.

Principal Investigator for a Drug Study: Allergan, Altimmune, Akero, BI, BMS, Boston Pharma, Conatus, Corcept, Gilead, Galectin, Genfit, GSK, Kowa, Enanta, Madrigal, Lilly, Merck, Novartis, Novo Nordisk, Rivus, Shire, Takeda, Terns, Viking and Zydus.

Stockholder: Rivus Pharma, Cytodyn, Akero and ChronWell.

Speaking bureau: Madrigal.

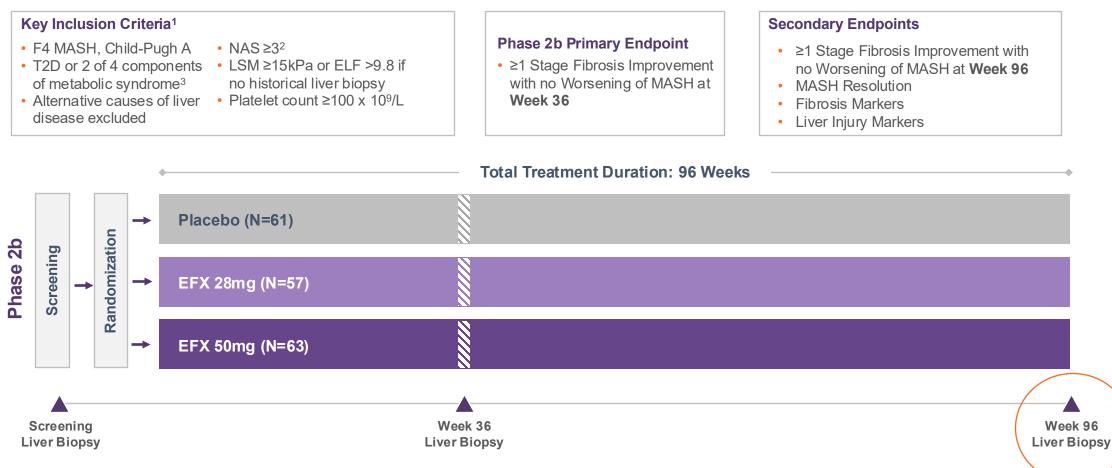
» Efruxifermin (EFX) is an Engineered, Bivalent Fc-FGF21 Analog

ak≡ro

Comprehensive Phase 3 SYNCHRONY Program in ~3500 participants with MASH

Builds on two biopsy-based Phase 2b studies (N ~300) in corresponding patient populations treated for 96 weeks

	HARMONY ^{1,2}	Synchrony	Symmetry ³	synchrony
Fibrosis Stage	F2-F3	F2-F3	F4, Compensated	F4, Compensated
Phase	2b	3	2b	3
Ν	128	1650	182	1150
Weeks	96	240	96	~260



Phase 3 study evaluating safety & tolerability in ~700 clinically-diagnosed participants (F1 to F4, compensated) for 52 weeks Recruitment Complete

¹ Harrison (2023) Lancet Gastroenterol Hepatol; ² Harrison (2024) Clin Gastroenterol Hepatol; ³ Noureddin (2025) N Engl J Med.

Phase 2b SYMMETRY Trial Design: Compensated Cirrhosis (F4) Due to MASH with Liver Histology at 36 and 96 Weeks

¹ All participants had biopsy-confirmed compensated cirrhosis (Fibrosis Stage 4) caused by MASH ("definitive MASH"), or cryptogenic cirrhosis attributed to MASH. Participants with cryptogenic cirrhosis attributed to MASH were limited to approximately 20% of the total study population.

² Except those with cryptogenic cirrhosis attributed to MASH.

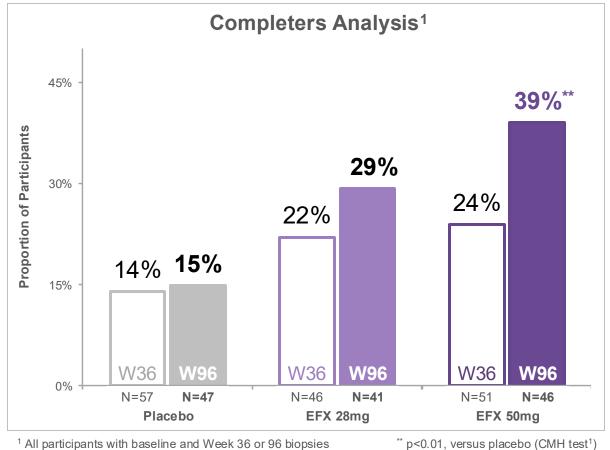
³ Obesity, dyslipidemia, elevated blood pressure, and elevated fasting glucose.

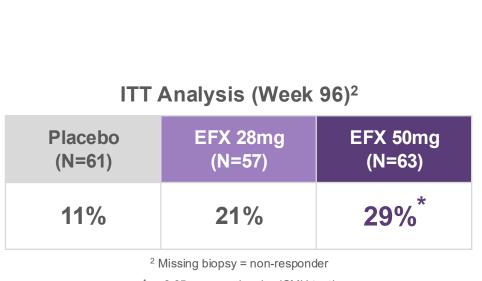
	N	Description
Full Analysis Set (FAS) / Safety SetPlacebo (N=61)EFX 28mg (N=57)EFX 50mg (N=63)	181	All randomized participants who received at least one dose of study drug
Week 36 Liver Biopsy Analysis Set (LBAS)Placebo (N=57)EFX 28mg (N=46)EFX 28mg (N=51)	154	All participants with baseline and Week 36 biopsy results
Week 96 LBAS Placebo (N=47) EFX 28mg (N=41) EFX 28mg (N=46)	134	All participants with baseline and Week 96 biopsy results

ITT Analyses are based on FAS, where missing biopsy = non-response

Completers Analyses are based on LBAS (Week 36 or Week 96)

» Baseline Demographics

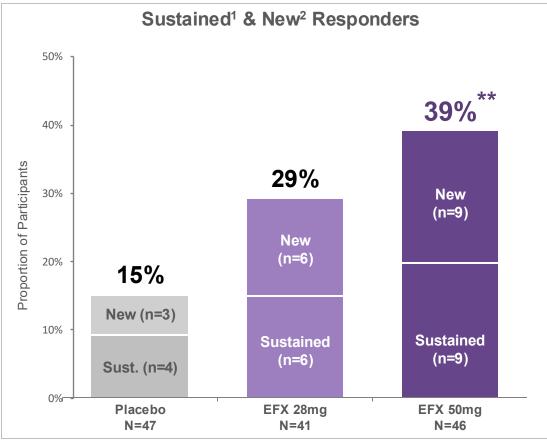

ak≡ro


Parameter (Mean)	Placebo (N=61)	EFX 28mg (N=57)	EFX 50mg (N=63)
Age (Years)	61	62	59
Sex (% Female)	62	68	70
BMI (kg/m ²)	36.7	36.1	34.5
Cryptogenic cirrhosis ¹ (%)	26	21	17
Enhanced Liver Fibrosis (ELF) Score	10.4	10.6	10.5
Liver Stiffness by VCTE (FibroScan) (kPa)	24.7	24.1	24.5
Alanine Aminotransferase (ALT) (U/L)	40.3	40.1	38.4
Aspartate Aminotransferase (AST) (U/L)	35.5	37.1	37.5
Total Bilirubin (mg/dL)	0.7	0.7	0.7
Platelet count (x10 ⁹ /L)	181	183	185
Prothrombin Time International Normalized Ratio (INR)	1.1	1.1	1.1
Albumin (g/dL)	4.3	4.2	4.3
Type 2 Diabetes (%)	82	81	78
HbA1c (%)	6.8	6.8	6.6
Triglycerides (mg/dL)	143	148	159
GLP-1 Receptor Agonist Use (%)	26	19	33
Statin Use (%)	53	46	43

¹Biopsy-confirmed cryptogenic cirrhosis attributed to MASH

Significant Improvement in Fibrosis ≥1 Stage with No Worsening of MASH Observed with EFX 50mg at Week 96

* p<0.05, versus placebo (CMH test)


 \gg

ak≡ro

Sustained and Expanded Fibrosis Improvement Observed with Longer Treatment

Fibrosis Improvement ≥1 Stage & No Worsening of MASH at Week 96

¹ Responder at Weeks 36 & 96; ² Responder at Week 96 ^{**} p<0.01, versus placebo (CMH test)

Sustained Response

Proportion of Week 36 Responders with Sustained Response at Week 96³

Placebo	EFX 28mg	EFX 50mg
(N=8)	(N=9)	(N=12)
4 (50%)	6 (67%)	9 (75%)

Expanded Response

Proportion of Week 36 Non-Responders with New Response at Week 96³

Placebo	EFX 28mg	EFX 50mg
(N=39)	(N=32)	(N=34)
3 (8%)	6 (19%)	9 (26%)

³ Not analyzed for statistical significance

» MASH Resolution Observed at Week 96

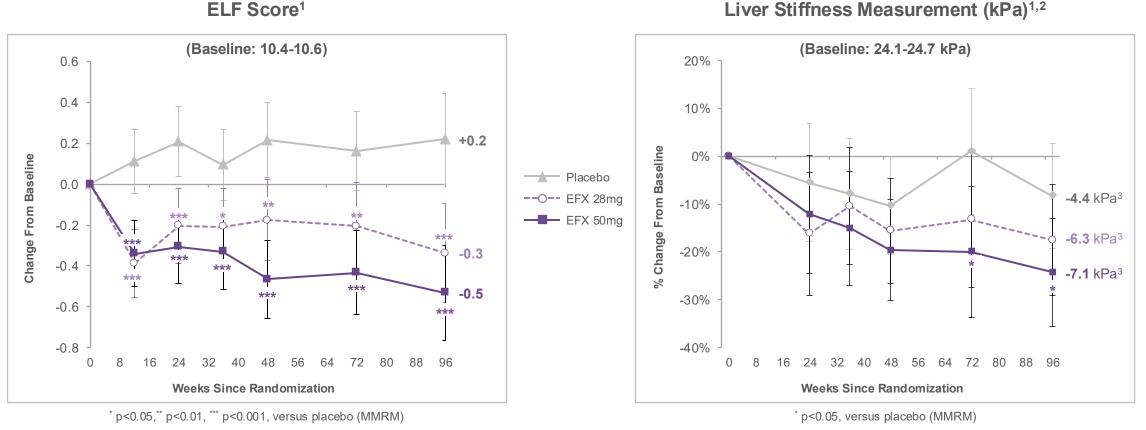
MASH Resolution

Completers Analysis¹ 70% 59%*** ** 55% 60% 50% Proportion of Participants 40% 30% 18% 20% 10% 0% EFX 28mg Placebo EFX 50mg N=34 N=32 N=40

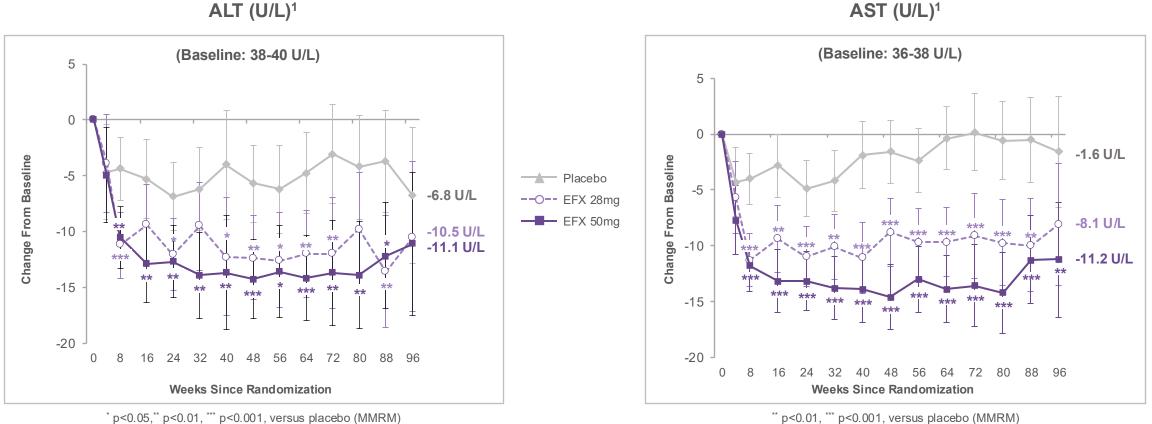
¹ All participants with baseline and Week 96 biopsies who had biopsy-confirmed compensated cirrhosis caused by MASH ("definitive MASH") at baseline

ITT Analysis ²				
Placebo (N=45)	EFX 28mg (N=45)	EFX 50mg (N=52)		
13%	42%**	42% **		
² Missing biopsy = non-responder ^{**} p<0.01, versus placebo (CMH test)				

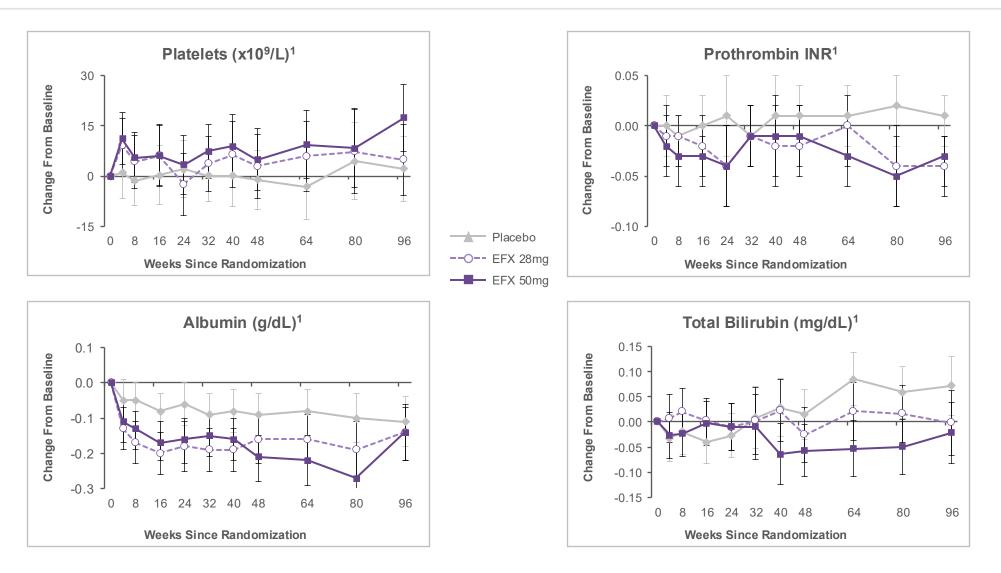
©2025 AKERO THERAPEUTICS.


Consistent Response across Multiple Baseline Subgroups for Primary Histological Endpoint at Week 96

Baseline Subgroup	EFX Dose	Estimated Proportion Difference (95% for EFX vs Placebo	CI)	
Cirrhosis caused by MASH ¹	28mg (N=32) 50mg (N=40)	I F-F	16.4 (-3.7, 36.4) 18.5 (-1.4, 38.5)	
Cryptogenic Cirrhosis ²	28mg (N=9) 50mg (N=6)	⊧	10.2 (-21.3, 41.6) 33.1 (-0.4, 66.6)	
T2D	28mg (N=33) 50mg (N=36)	► ►	9.2 (-10.1, 28.5) 21.2 (1.4, 41.0)	
No T2D	28mg (N=8) 50mg (N=10)		32.0 (-2.8, 66.7) 25.6 (-8.6, 59.8)	O EFX 2 EFX 2
GLP-1RA Use	28mg (N=9) 50mg (N=17)		19.1 (-15.9, 54.2) 14.3 (-17.6, 46.2)	
No GLP-1RA Use	28mg (N=32) 50mg (N=29)		11.6 (-7.7, 30.8) 25.5 (5.1, 45.9)	
Statin Use	28mg (N=17) 50mg (N=19)	II I	9.9 (-16.4, 36.3) 23.2 (-3.3, 49.8)	
No Statin Use	28mg (N=24) 50mg (N=27)		20.2 (-2.2, 42.5) 19.4 (-3.5, 42.2)	


¹ Biopsy-confirmed compensated cirrhosis caused by MASH ("definitive MASH") ² Biopsy-confirmed cryptogenic cirrhosis attributed to MASH

Temporal Pattern for Non-Invasive Tests (NITs) of Fibrosis **Corroborates** Histological Improvement in Cirrhosis


²Valid measurements only; ³LSMean absolute change from baseline

Rapid and Sustained Reductions in Markers of Liver Injury through Week 96

ak≡ro

Markers of Liver Function Maintained or Slightly Improved through Week 96

 \gg

ak≡ro

Adverse Events:

 \gg

Cumulative from Baseline through Week 96

Number of Participants, n (%)	Placebo (N=61)	EFX 28mg (N=57)	EFX 50mg (N=63)
Serious Adverse Events (SAEs) ^a	11 (18%)	15 (26%)	15 (24%)
AEs Leading to Death	1 (2%) ^b	0	0
AEs Leading to Discontinuation of Treatment	2 (3%)	6 (11%)	11 (17%)
Prior to Week 36	2 (3%)	5 (9%)	9 (14%)
After Week 36 and prior to Week 96	0	^b 1 (2%)	2 (3%)
	-		
Most Frequent (≥15%) Drug-Related AEs	Placebo (N=61)	EFX 28mg (N=57)	EFX 50mg (N=63)
Diarrhea	10 (16%)	11 (19%)	19 (30%)
Nausea	8 (13%)	11 (19%)	18 (29%)
Increased Appetite	3 (5%)	7 (12%)	18 (29%)
Injection Site Erythema	5 (8%)	10 (18%)	14 (22%)

^a None of the SAEs considered related to study drug; ^b Pneumonia (prior to week 36)

» Changes in **Bone Mineral Density**

- Poor bone health is a common complication of cirrhosis.^{1,2}
 - Across all treatment groups, 43% of participants had osteopenia³ at baseline, but only 4% were treated with bisphosphonates.
- Placebo-adjusted, significant relative reductions in bone mineral density (~5%) for spine and hip were observed for both EFX groups at Week 96, or about 2-3% per year.
- Number of participants experiencing fractures was equal across all treatment groups.

- Unprecedented improvement in fibrosis observed in participants with compensated cirrhosis due to MASH after 96 weeks of treatment with EFX 50mg.
- Improvement in histologic fibrosis corroborated by non-invasive tests of liver fibrosis.
- Overall picture of liver injury and function suggest liver health is maintained or slightly improved by EFX compared to placebo.
- Acceptable safety & tolerability profile, with AEs predominantly gastrointestinal and transient.
- Based on a greater response across multiple parameters, EFX 50mg dose selected for confirmatory Phase 3 study in participants with compensated cirrhosis
 - Currently enrolling [NCT06528314]; includes assessment of liver-related outcomes and all-cause mortality.

ORIGINAL ARTICLE

Efruxifermin in Compensated Liver Cirrhosis Caused by MASH

Mazen Noureddin, M.D.,^{1,2} Mary E. Rinella, M.D.,³ Naga P. Chalasani, M.D.,⁴ Guy W. Neff, M.D.,⁵ K. Jean Lucas, M.D.,⁶ Manuel E. Rodriguez, M.D.,⁷
Madhavi Rudraraju, M.D.,⁸ Rashmee Patil, M.D.,⁸ Cynthia Behling, M.D., Ph.D.,⁹ Mark Burch, Ph.D.,¹⁰ Doreen C. Chan, Ph.D.,¹⁰ Erik J. Tillman, Ph.D.,¹⁰
Arian Zari, B.S.,¹⁰ Brittany de Temple, B.S.,¹⁰ Reshma Shringarpure, Ph.D.,¹⁰ Meena Jain, M.B., B.Chir., Ph.D.,¹⁰ Timothy Rolph, D.Phil.,¹⁰
Andrew Cheng, M.D., Ph.D.,¹⁰ and Kitty Yale, B.S.¹⁰

Thank you to the participants and their families, the investigators and their teams, who participated in the completed SYMMETRY study.

Investigators: *Stephen Harrison, MD, Mazen Noureddin, MD and the SUMMIT network* • *Gary Abrams, MD* • *Naim Alkhouri, MD* • *Duane C Anderson, MD* • *Victor Ankoma-Sey, MD* • *Amon Asgharpour, MD* • *Robert Barish, MD* • *Jacques Benun, MD* • *Bal Raj Bhandari, MD* • *Sureka Bollepalli, MD* • *Shekhar Challa, MD* • *Laura Cisneros, MD* • *Sudhanshu Gogia, MD* • *Saeid Goshtasbi, MD* • *Colby Grossman, MD* • *Nadege T. Gunn, MD* • *Anita Kohli, MD* • *Alma Laura Ladron de Guevara Cetina, MD* • *John Lowe, MD* • *Kathryn J. Lucas, MD* • *Matthew Mason, MD* • *Fernando Membreno, MD* • *Edward A. Mena, MD* • *Ann Moore, NP* • *Sam E. Moussa, MD* • *Guy W. Neff, MD* • *Grisell Ortiz-Lasanta, MD* • *Pankaj Patel, MD* • *Pavan Patel, MD* • *Robert Rahimi, MD* • *Gary Reiss, MD* • *Jose Rodriguez, MD* • *Manuel E. Rodriguez, MD* • *Madhavi Rudraraju, MD* • *Peter Ruane, MD* • *William Sanchez, MD* • *Harry Sarles, MD* • *Muhammad Sheikh, MD* • *Mousab Tabbaa, MD* • *Louis Wilson, MD* • *Scott A. Wofford, MD*